The Enzyme Database

Displaying entries 1-50 of 1095.

<< Previous | Next >>    printer_iconPrintable version

EC 1.14.11.24     Relevance: 100%
Accepted name: 2′-deoxymugineic-acid 2′-dioxygenase
Reaction: 2′-deoxymugineic acid + 2-oxoglutarate + O2 = mugineic acid + succinate + CO2
For diagram of nicotianamine biosynthesis, click here
Other name(s): IDS3
Systematic name: 2′-deoxymugineic acid,2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Requires iron(II). It is also likely that this enzyme can catalyse the hydroxylation of 3-epihydroxy-2′-deoxymugineic acid to form 3-epihydroxymugineic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 133758-62-0
References:
1.  Nakanishi, H., Yamaguchi, H., Sasakuma, T., Nishizawa, N.K. and Mori, S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol. Biol. 44 (2000) 199–207. [PMID: 11117263]
2.  Kobayashi, T., Nakanishi, H., Takahashi, M., Kawasaki, S., Nishizawa, N.K. and Mori, S. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212 (2001) 864–871. [PMID: 11346963]
[EC 1.14.11.24 created 2005]
 
 
EC 6.3.2.48     Relevance: 98.9%
Accepted name: L-arginine-specific L-amino acid ligase
Reaction: ATP + L-arginine + an L-amino acid = ADP + phosphate + an L-arginyl-L-amino acid
Other name(s): RizA; L-amino acid ligase RizA
Systematic name: L-arginine:L-amino acid ligase (ADP-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, requires Mn2+ for activity. It shows strict substrate specificity toward L-arginine as the first (N-terminal) amino acid of the product. The second amino acid could be any standard protein-building amino acid except for L-proline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kino, K., Kotanaka, Y., Arai, T. and Yagasaki, M. A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Biosci. Biotechnol. Biochem. 73 (2009) 901–907. [DOI] [PMID: 19352016]
[EC 6.3.2.48 created 2015]
 
 
EC 3.1.3.2     Relevance: 98.8%
Accepted name: acid phosphatase
Reaction: a phosphate monoester + H2O = an alcohol + phosphate
Other name(s): acid phosphomonoesterase; phosphomonoesterase; glycerophosphatase; acid monophosphatase; acid phosphohydrolase; acid phosphomonoester hydrolase; uteroferrin; acid nucleoside diphosphate phosphatase; orthophosphoric-monoester phosphohydrolase (acid optimum)
Systematic name: phosphate-monoester phosphohydrolase (acid optimum)
Comments: Wide specificity. Also catalyses transphosphorylations.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-77-8
References:
1.  Joyce, B.K. and Grisolia, S. Purification and properties of a nonspecific acid phosphatase from wheat germ. J. Biol. Chem. 235 (1960) 2278–2281. [PMID: 14408027]
2.  Kuo, M.-H. and Blumenthal, H.J. Purification and properties of an acid phosphomonoesterase from Neurospora crassa. Biochim. Biophys. Acta 52 (1961) 13–29. [DOI] [PMID: 14460641]
3.  Tsuboi, K.K., Wiener, G. and Hudson, P.B. Acid phosphatase. VII. Yeast phosphomonoesterase; isolation procedure and stability characteristics. J. Biol. Chem. 224 (1957) 621–635. [PMID: 13405892]
[EC 3.1.3.2 created 1961]
 
 
EC 2.1.1.141     Relevance: 98.1%
Accepted name: jasmonate O-methyltransferase
Reaction: S-adenosyl-L-methionine + jasmonate = S-adenosyl-L-homocysteine + methyl jasmonate
Glossary: jasmonic acid = {(1R,2R)-3-oxo-2-[(Z)pent-2-enyl]cyclopent-2-enyl}acetic acid
Other name(s): jasmonic acid carboxyl methyltransferase
Systematic name: S-adenosyl-L-methionine:jasmonate O-methyltransferase
Comments: 9,10-Dihydrojasmonic acid is a poor substrate for the enzyme. The enzyme does not convert 12-oxo-phytodienoic acid (a precursor of jasmonic acid), salicylic acid, benzoic acid, linolenic acid or cinnamic acid into their corresponding methyl esters. Enzyme activity is inhibited by the presence of divalent cations, e.g., Ca2+, Cu2+, Mg2+ and Zn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 346420-58-4
References:
1.  Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S. and Choi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98 (2001) 4788–4793. [DOI] [PMID: 11287667]
[EC 2.1.1.141 created 2001]
 
 
EC 1.14.11.25     Relevance: 96.1%
Accepted name: mugineic-acid 3-dioxygenase
Reaction: (1) mugineic acid + 2-oxoglutarate + O2 = 3-epihydroxymugineic acid + succinate + CO2
(2) 2′-deoxymugineic acid + 2-oxoglutarate + O2 = 3-epihydroxy-2′-deoxymugineic acid + succinate + CO2
For diagram of nicotianamine biosynthesis, click here
Other name(s): IDS2
Systematic name: mugineic acid,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakanishi, H., Yamaguchi, H., Sasakuma, T., Nishizawa, N.K. and Mori, S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol. Biol. 44 (2000) 199–207. [PMID: 11117263]
2.  Okumura, N., Nishizawa, N.K., Umehara, Y., Ohata, T., Nakanishi, H., Yamaguchi, T., Chino, M. and Mori. S. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol. Biol. 25 (1994) 705–719. [PMID: 8061321]
[EC 1.14.11.25 created 2005]
 
 
EC 2.1.1.15     Relevance: 95.2%
Accepted name: fatty-acid O-methyltransferase
Reaction: S-adenosyl-L-methionine + a fatty acid = S-adenosyl-L-homocysteine + a fatty acid methyl ester
Other name(s): fatty acid methyltransferase; fatty acid O-methyltransferase
Systematic name: S-adenosyl-L-methionine:fatty-acid O-methyltransferase
Comments: Oleic acid is the most effective fatty acid acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-89-6
References:
1.  Akamatsu, Y. and Law, J.H. The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation. J. Biol. Chem. 245 (1970) 709–713. [PMID: 4984625]
[EC 2.1.1.15 created 1972]
 
 
EC 1.16.8.1      
Deleted entry: cob(II)yrinic acid a,c-diamide reductase. This activity is now known to be catalyzed by EC 2.5.1.17, corrinoid adenosyltransferase
[EC 1.16.8.1 created 2004, deleted 2019]
 
 
EC 6.3.5.10     Relevance: 94.6%
Accepted name: adenosylcobyric acid synthase (glutamine-hydrolysing)
Reaction: 4 ATP + adenosylcobyrinic acid a,c-diamide + 4 L-glutamine + 4 H2O = 4 ADP + 4 phosphate + adenosylcobyric acid + 4 L-glutamate
For diagram of corrin biosynthesis (part 5), click here
Other name(s): CobQ; cobyric acid synthase; 5′-deoxy-5′-adenosylcobyrinic-acid-a,c-diamide:L-glutamine amido-ligase; Ado-cobyric acid synthase [glutamine hydrolyzing]
Systematic name: adenosylcobyrinic-acid-a,c-diamide:L-glutamine amido-ligase (ADP-forming)
Comments: Requires Mg2+. NH3 can act instead of glutamine. This enzyme catalyses the four-step amidation sequence from cobyrinic acid a,c-diamide to cobyric acid via the formation of cobyrinic acid triamide, tetraamide and pentaamide intermediates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 137672-90-3
References:
1.  Blanche, F., Couder, M., Debussche, L., Thibaut, D., Cameron, B. and Crouzet, J. Biosynthesis of vitamin B12: stepwise amidation of carboxyl groups b, d, e, and g of cobyrinic acid a,c-diamide is catalyzed by one enzyme in Pseudomonas denitrificans. J. Bacteriol. 173 (1991) 6046–6051. [DOI] [PMID: 1917839]
2.  Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390–412. [PMID: 12195810]
[EC 6.3.5.10 created 2004]
 
 
EC 1.14.13.198      
Transferred entry: monacolin L hydroxylase. Now EC 1.14.14.125, monacolin L hydroxylase
[EC 1.14.13.198 created 2014, deleted 2018]
 
 
EC 2.7.2.18     Relevance: 93.2%
Accepted name: fatty acid kinase
Reaction: ATP + a fatty acid = ADP + a fatty acyl phosphate (overall reaction)
(1a) ATP + a fatty acid-[fatty acid-binding protein] = ADP + a fatty acyl phosphate-[fatty acid-binding protein]
(1b) a fatty acyl phosphate-[fatty acid-binding protein] + a fatty acid = a fatty acyl phosphate + a fatty acid-[fatty acid-binding protein]
Other name(s): fakAB (gene names)
Systematic name: ATP:fatty acid 1-phosphotransferase
Comments: The enzyme is a dimeric complex consisting of an ATP-binding protein (FakA) and a fatty acid-binding protein (FakB). The first step in the reaction is the binding of FakB (with a bound fatty acid) to FakA. The fatty acid bound to FakB is then phosphorylated by FakA, and the fatty acyl phosphate-bound FakB is released from the complex. In the presence of an exchangeable fatty acid pool in the cell membrane, the fatty acy phosphate bound to FakB exchanges with a fatty acid to regenerate the substrate for FakA. The system is widespread in Gram-positive bacteria, with most strains possessing a single FakA protein along with multiple FakB subunits that differ in their specificity towards fatty acid substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Parsons, J.B., Frank, M.W., Jackson, P., Subramanian, C. and Rock, C.O. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus. Mol. Microbiol. 92 (2014) 234–245. [DOI] [PMID: 24673884]
2.  Parsons, J.B., Broussard, T.C., Bose, J.L., Rosch, J.W., Jackson, P., Subramanian, C. and Rock, C.O. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 111 (2014) 10532–10537. [DOI] [PMID: 25002480]
3.  Broussard, T.C., Miller, D.J., Jackson, P., Nourse, A., White, S.W. and Rock, C.O. Biochemical roles for conserved residues in the bacterial fatty acid-binding protein family. J. Biol. Chem. 291 (2016) 6292–6303. [DOI] [PMID: 26774272]
[EC 2.7.2.18 created 2021]
 
 
EC 1.5.3.2     Relevance: 91%
Accepted name: N-methyl-L-amino-acid oxidase
Reaction: an N-methyl-L-amino acid + H2O + O2 = an L-amino acid + formaldehyde + H2O2
Other name(s): N-methylamino acid oxidase; demethylase
Systematic name: N-methyl-L-amino-acid:oxygen oxidoreductase (demethylating)
Comments: A flavoprotein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9029-23-6
References:
1.  Moritani, M. Demethylase. IV. Kinetics and reaction mechanism. Hukuoka Acta Med. 43 (1952) 651–658.
2.  Moritani, M. Demethylase. V. Specificity and its relation to amino acid oxidase. Hukuoka Acta Med. 43 (1952) 731–735.
3.  Moritani, M., Tung, T.-C., Fujii, S., Mito, H., Izumika, N., Kenmochi, K. and Hirohata, R. Specificity of rabbit kidney demethylase. J. Biol. Chem. 209 (1954) 485–492. [PMID: 13192101]
[EC 1.5.3.2 created 1961]
 
 
EC 1.4.3.3     Relevance: 90.8%
Accepted name: D-amino-acid oxidase
Reaction: a D-amino acid + H2O + O2 = a 2-oxo carboxylate + NH3 + H2O2
For diagram of cephalosporin biosynthesis, click here
Other name(s): ophio-amino-acid oxidase (ambiguous); L-amino acid:O2 oxidoreductase; new yellow enzyme
Systematic name: D-amino-acid:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD). Wide specificity for D-amino acids. Also acts on glycine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9000-88-8
References:
1.  Dixon, M. and Kleppe, K. D-Amino acid oxidase. I. Dissociation and recombination of the haloenzyme. Biochim. Biophys. Acta 96 (1965) 357–367. [DOI] [PMID: 14314378]
2.  Dixon, M. and Kleppe, K. D-Amino acid oxidase. II. Specificity, competitive inhibition and reaction sequence. Biochim. Biophys. Acta 96 (1965) 368–382.
3.  Dixon, M. and Kleppe, K. D-Amino acid oxidase. III. Effect of pH. Biochim. Biophys. Acta 96 (1965) 383–389. [DOI] [PMID: 14314379]
4.  Massey, V., Palmer, G. and Bennett, R. The purification and some properties of D-amino acid oxidase. Biochim. Biophys. Acta 48 (1961) 1–9. [DOI] [PMID: 13767909]
5.  Meister, A. and Wellner, D. Flavoprotein amino acid oxidase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 609–648.
[EC 1.4.3.3 created 1961]
 
 
EC 2.6.1.12     Relevance: 90.2%
Accepted name: alanine—oxo-acid transaminase
Reaction: L-alanine + a 2-oxo carboxylate = pyruvate + an L-amino acid
For diagram of reaction, click here and for mechanism, click here
Other name(s): L-alanine-α-keto acid aminotransferase; leucine-alanine transaminase; alanine-keto acid aminotransferase; alanine-oxo acid aminotransferase
Systematic name: L-alanine:2-oxo-acid aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-41-5
References:
1.  Altenbern, R.A. and Housewright, R.D. Transaminases in smooth Brucella abortus, strain 19. J. Biol. Chem. 204 (1953) 159–167. [PMID: 13084587]
2.  Rowsell, E.V. Transaminations with pyruvate and other α-keto acids. Biochem. J. 64 (1956) 246–252. [PMID: 13363834]
3.  Sallach, H.J. Formation of serine from hydroxypyruvate and L-alanine. J. Biol. Chem. 223 (1956) 1101–1108. [PMID: 13385257]
4.  Wilson, D.G., King, K.W. and Burris, R.H. Transaminase reactions in plants. J. Biol. Chem. 208 (1954) 863–874. [PMID: 13174595]
[EC 2.6.1.12 created 1961]
 
 
EC 1.4.3.2     Relevance: 88.7%
Accepted name: L-amino-acid oxidase
Reaction: an L-amino acid + H2O + O2 = a 2-oxo carboxylate + NH3 + H2O2
Other name(s): ophio-amino-acid oxidase (ambiguous)
Systematic name: L-amino-acid:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9000-89-9
References:
1.  Meister, A. and Wellner, D. Flavoprotein amino acid oxidase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 609–648.
2.  Wellner, D. and Meister, A. Crystalline L-amino acid oxidase of Crotalus adamanteus. J. Biol. Chem. 235 (1960) 2013–2018. [PMID: 13843884]
[EC 1.4.3.2 created 1961]
 
 
EC 1.14.13.197      
Transferred entry: dihydromonacolin L hydroxylase. Now EC 1.14.14.124, dihydromonacolin L hydroxylase
[EC 1.14.13.197 created 2014, deleted 2018]
 
 
EC 1.14.14.48     Relevance: 88.1%
Accepted name: jasmonoyl-L-amino acid 12-hydroxylase
Reaction: a jasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxyjasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: jasmonic acid = {(1R,2R)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
(+)-7-epi-jasmonic acid = {(1R,2S)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
Other name(s): CYP94B1 (gene name); CYP94B3 (gene name)
Systematic name: jasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates, catalysing the hydroxylation of the C-12 position of jasmonic acid. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koo, A.J., Cooke, T.F. and Howe, G.A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. USA 108 (2011) 9298–9303. [DOI] [PMID: 21576464]
2.  Kitaoka, N., Matsubara, T., Sato, M., Takahashi, K., Wakuta, S., Kawaide, H., Matsui, H., Nabeta, K. and Matsuura, H. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol. 52 (2011) 1757–1765. [DOI] [PMID: 21849397]
3.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
4.  Kitaoka, N., Kawaide, H., Amano, N., Matsubara, T., Nabeta, K., Takahashi, K. and Matsuura, H. CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 99 (2014) 6–13. [DOI] [PMID: 24467969]
5.  Koo, A.J., Thireault, C., Zemelis, S., Poudel, A.N., Zhang, T., Kitaoka, N., Brandizzi, F., Matsuura, H. and Howe, G.A. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J. Biol. Chem. 289 (2014) 29728–29738. [DOI] [PMID: 25210037]
6.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
[EC 1.14.14.48 created 2017]
 
 
EC 5.1.1.10     Relevance: 87.7%
Accepted name: amino-acid racemase
Reaction: an L-amino acid = a D-amino acid
Other name(s): L-amino acid racemase
Systematic name: amino-acid racemase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9068-61-5
References:
1.  Soda, K. and Osumi, T. Crystalline amino acid racemase with low substrate specificity. Biochem. Biophys. Res. Commun. 35 (1969) 363–368. [DOI] [PMID: 5788493]
[EC 5.1.1.10 created 1972]
 
 
EC 3.5.1.127     Relevance: 87.4%
Accepted name: jasmonoyl-L-amino acid hydrolase
Reaction: a jasmonoyl-L-amino acid + H2O = jasmonate + an L-amino acid
Glossary: tuberonic acid = 12-hydroxyjasmonate = {(1R,2R)-2-[(2Z)-5-hydroxypent-2-enyl]-3-oxo-cyclopentyl}acetate
jasmonate = {(1R,2R)-3-oxo-2-[(2Z)-pent-2-enyl]cyclopentyl}acetate
Other name(s): IAR3 (gene name); ILL4 (gene name); ILL6 (gene name)
Systematic name: jasmonoyl-L-amino acid amidohydrolase
Comments: This entry includes a family of enzymes that recyle jasmonoyl-amino acid conjugates back to jasmonates. The enzymes from Arabidopsis thaliana have been shown to also act on 12-hydroxyjasmonoyl-L-isoleucine, generating tuberonic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Widemann, E., Miesch, L., Lugan, R., Holder, E., Heinrich, C., Aubert, Y., Miesch, M., Pinot, F. and Heitz, T. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288 (2013) 31701–31714. [DOI] [PMID: 24052260]
[EC 3.5.1.127 created 2017]
 
 
EC 7.5.2.4     Relevance: 87.3%
Accepted name: ABC-type teichoic-acid transporter
Reaction: ATP + H2O + teichoic acid[side 1] = ADP + phosphate + teichoic acid[side 2]
Other name(s): teichoic-acid-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, teichoic-acid-exporting)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. An enzyme found in Gram-positive bacteria that exports teichoic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fath, M.J. and Kolter, R. ABC transporters: bacterial exporters. Microbiol. Rev. 57 (1993) 995–1017. [PMID: 8302219]
2.  Lazarevic, V. and Karamoto, D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16 (1995) 345–355. [DOI] [PMID: 7565096]
3.  Paulsen, I.T., Beness, A.M. and Saier, M.H., Jr. Computer-based analysis of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143 (1997) 2685–2699. [DOI] [PMID: 9274022]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.5.2.4 created 2000 as EC 3.6.3.40, transferred 2018 to EC 7.5.2.4]
 
 
EC 1.13.11.92     Relevance: 87.1%
Accepted name: fatty acid α-dioxygenase
Reaction: a fatty acid + O2 = a (2R)-2-hydroperoxyfatty acid
Other name(s): DOX1 (gene name)
Systematic name: fatty acid:oxygen 2-oxidoreductase [(2R)-2-hydroperoxyfatty acid-forming]
Comments: Contains heme. This plant enzyme catalyses the (2R)-hydroperoxidation of fatty acids. It differs from lipoxygenases and cyclooxygenases in that the oxygen addition does not target an unsaturated region in the fatty acid. In vitro the product undergoes spontaneous decarboxylation, resulting in formation of a chain-shortened aldehyde. In vivo the product may be reduced to a (2R)-2-hydroxyfatty acid. The enzyme, which is involved in responses to different abiotic and biotic stresses, has a wide substrate range that includes both saturated and unsaturated fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Akakabe, Y., Matsui, K., and Kajiwara, T. Enantioselective α-hydroperoxylation of long-chain fatty acids with crude enzyme of marine green alga Ulva pertusa. Tetrahedron Lett. 40 (1999) 1137–1140. [DOI]
2.  Hamberg, M., Sanz, A. and Castresana, C. α-oxidation of fatty acids in higher plants. Identification of a pathogen-inducible oxygenase (piox) as an α-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. J. Biol. Chem. 274 (1999) 24503–24513. [DOI] [PMID: 10455113]
3.  Saffert, A., Hartmann-Schreier, J., Schon, A. and Schreier, P. A dual function α-dioxygenase-peroxidase and NAD(+) oxidoreductase active enzyme from germinating pea rationalizing α-oxidation of fatty acids in plants. Plant Physiol. 123 (2000) 1545–1552. [DOI] [PMID: 10938370]
4.  Koeduka, T., Matsui, K., Akakabe, Y. and Kajiwara, T. Catalytic properties of rice α-oxygenase. A comparison with mammalian prostaglandin H synthases. J. Biol. Chem. 277 (2002) 22648–22655. [DOI] [PMID: 11909851]
5.  Liu, W., Rogge, C.E., Bambai, B., Palmer, G., Tsai, A.L. and Kulmacz, R.J. Characterization of the heme environment in Arabidopsis thaliana fatty acid α-dioxygenase-1. J. Biol. Chem. 279 (2004) 29805–29815. [DOI] [PMID: 15100225]
6.  Meisner, A.K., Saffert, A., Schreier, P. and Schon, A. Fatty acid α-dioxygenase from Pisum sativum: temporal and spatial regulation during germination and plant development. J. Plant Physiol. 166 (2009) 333–343. [DOI] [PMID: 18760499]
[EC 1.13.11.92 created 2021]
 
 
EC 1.14.14.125     Relevance: 86.8%
Accepted name: monacolin L hydroxylase
Reaction: monacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = monacolin J acid + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of lovastatin biosynthesis, click here
Glossary: monacolin L acid = (3R,5R)-7-[(1S,2S,6R,8aR)-2,6-dimethyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid
monacolin J acid = (3R,5R)-7-[(1S,2S,6R,8S,8aR)-8-hydroxy-2,6-dimethyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid
Other name(s): LovA (ambiguous)
Systematic name: monacolin L acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from fungi also catalyses the reaction of EC 1.14.14.124, dihydromonacolin L hydroxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Barriuso, J., Nguyen, D.T., Li, J.W., Roberts, J.N., MacNevin, G., Chaytor, J.L., Marcus, S.L., Vederas, J.C. and Ro, D.K. Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. J. Am. Chem. Soc. 133 (2011) 8078–8081. [DOI] [PMID: 21495633]
[EC 1.14.14.125 created 2014 as EC 1.14.13.198, transferred 2018 to EC 1.14.14.125]
 
 
EC 3.1.1.43     Relevance: 86.6%
Accepted name: α-amino-acid esterase
Reaction: an α-amino acid ester + H2O = an α-amino acid + an alcohol
Other name(s): α-amino acid ester hydrolase
Systematic name: α-amino-acid-ester aminoacylhydrolase
Comments: Also catalyses α-aminoacyl transfer to a number of amine nucleophiles.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 74506-40-4
References:
1.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Purification of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1069–1074.
2.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Substrate specificity of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1075–1081.
3.  Takahashi, T., Yamazaki, Y. and Kato, K. Substrate specificity of an α-amino acid ester hydrolase produced by Acetobacter turbidans A. T.C.C. 9325. Biochem. J. 137 (1974) 497–503. [PMID: 4424889]
[EC 3.1.1.43 created 1983]
 
 
EC 2.3.1.136     Relevance: 86.4%
Accepted name: polysialic-acid O-acetyltransferase
Reaction: acetyl-CoA + an α-2,8-linked polymer of sialic acid = CoA + polysialic acid acetylated at O-7 or O-9
Systematic name: acetyl-CoA:polysialic-acid O-acetyltransferase
Comments: Acts only on substrates containing more than 14 sialosyl residues. Catalyses the modification of capsular polysaccharides in some strains of Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 116412-21-6
References:
1.  Higa, H.H. and Varki, A. Acetyl-coenzyme A:polysialic acid O-acetyltransferase from K1-positive Escherichia coli. The enzyme responsible for the O-acetyl plus phenotype and for O-acetyl form variation. J. Biol. Chem. 263 (1988) 8872–8878. [PMID: 2897964]
[EC 2.3.1.136 created 1992]
 
 
EC 2.6.1.14     Relevance: 86.1%
Accepted name: asparagine—oxo-acid transaminase
Reaction: L-asparagine + a 2-oxo carboxylate = 2-oxosuccinamate + an amino acid
For diagram of reaction, click here and for mechanism, click here
Other name(s): asparagine-keto acid aminotransferase
Systematic name: L-asparagine:2-oxo-acid aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-43-7
References:
1.  Meister, A. and Fraser, P.E. Enzymatic formation of L-asparagine by transamination. J. Biol. Chem. 210 (1954) 37–43. [PMID: 13201567]
[EC 2.6.1.14 created 1961]
 
 
EC 6.2.1.60     Relevance: 85.7%
Accepted name: marinolic acid—CoA ligase
Reaction: (1) ATP + a marinolic acid + CoA = AMP + diphosphate + a marinoloyl-CoA
(2) ATP + a pseudomonic acid + CoA = AMP + diphosphate + a pseudomonoyl-CoA
Glossary: thiomarinols = natural products that combine monic acid and the compact holothin core of the dithiolopyrrolones.
Other name(s): tmlU (gene name)
Systematic name: marinolic acid:CoA ligase (AMP-forming)
Comments: The enzyme, characterized from the bacterium Pseudoalteromonas sp. SANK 73390, catalyses the CoA acylation of pseudomonic and marinolic acids, as part of the biosynthesis of thiomarinols and related compounds.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dunn, Z.D., Wever, W.J., Economou, N.J., Bowers, A.A. and Li, B. Enzymatic basis of "hybridity" in thiomarinol biosynthesis. Angew. Chem. Int. Ed. Engl. 54 (2015) 5137–5141. [PMID: 25726835]
[EC 6.2.1.60 created 2019]
 
 
EC 1.13.12.20     Relevance: 85.4%
Accepted name: noranthrone monooxygenase
Reaction: norsolorinic acid anthrone + O2 = norsolorinic acid + H2O
For diagram of aflatoxin biosynthesis (part 1), click here
Glossary: norsolorinic acid anthrone = noranthrone = 2-hexanoyl-1,3,6,8-tetrahydroxyanthracen-9(10H)-one
norsolorinate = 2-hexanoyl-1,3,6,8-tetrahydroxy-9,10-anthraquinone
Other name(s): norsolorinate anthrone oxidase
Systematic name: norsolorinic acid anthrone:oxygen 9-oxidoreductase (norsolorinic acid-forming)
Comments: Involved in the synthesis of aflatoxins in the fungus Aspergillus parasiticus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ehrlich, K.C., Li, P., Scharfenstein, L. and Chang, P.K. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 76 (2010) 3374–3377. [DOI] [PMID: 20348292]
[EC 1.13.12.20 created 2013]
 
 
EC 3.5.1.106     Relevance: 85.2%
Accepted name: N-formylmaleamate deformylase
Reaction: N-formylmaleamic acid + H2O = maleamate + formate
Other name(s): NicD
Systematic name: N-formylmaleamic acid amidohydrolase
Comments: The reaction is involved in the aerobic catabolism of nicotinic acid.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Jimenez, J.I., Canales, A., Jimenez-Barbero, J., Ginalski, K., Rychlewski, L., Garcia, J.L. and Diaz, E. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc. Natl. Acad. Sci. USA 105 (2008) 11329–11334. [DOI] [PMID: 18678916]
[EC 3.5.1.106 created 2010]
 
 
EC 1.11.1.22     Relevance: 85.1%
Accepted name: hydroperoxy fatty acid reductase
Reaction: a hydroperoxy fatty acid + NADPH + H+ = a hydroxy fatty acid + NADP+ + H2O
Other name(s): slr1171 (gene name); slr1992 (gene name); hydroperoxy fatty acid:NADPH oxidoreductase
Systematic name: NADPH:hydroperoxy fatty acid oxidoreductase
Comments: The enzyme, characterized from the cyanobacterium Synechocystis PCC 6803, can reduce unsaturated fatty acid hydroperoxides and alkyl hydroperoxides. The enzyme, which utilizes NADPH generated by the photosynthetic electron transfer system, protects the cells from lipid peroxidation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gaber, A., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499 (2001) 32–36. [DOI] [PMID: 11418106]
2.  Gaber, A., Yoshimura, K., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol. 136 (2004) 2855–2861. [DOI] [PMID: 15347790]
[EC 1.11.1.22 created 2013]
 
 
EC 6.3.2.28      
Transferred entry: L-amino-acid α-ligase. Now EC 6.3.2.49, L-alanine-L-anticapsin ligase
[EC 6.3.2.28 created 2006, deleted 2015]
 
 
EC 4.2.1.183     Relevance: 84.4%
Accepted name: etheroleic acid synthase
Reaction: (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoate = (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoate + H2O
Glossary: (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoic acid = etheroleic acid
(9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid = 13(S)-HPOD
Other name(s): colneleic acid/etheroleic acid synthase; 13/9-DES; 9/13-DES; 13/9-divinyl ether synthase; (9Z,11E)-12-[(1E)-hex-1-en-1-yloxy]dodeca-9,11-dienoate synthase
Systematic name: (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoate lyase
Comments: A heme-thiolate protein (P-450) occurring in several plants, including Allium sativum (garlic) and Selaginella moellendorffii (spikemoss). The enzyme also catalyses the reaction of EC 4.2.1.121, colneleate synthase, to a lesser extent.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Grechkin, A.N., Fazliev, F.N. and Mukhtarova, L.S. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS Lett. 371 (1995) 159–162. [DOI] [PMID: 7672118]
2.  Stumpe, M., Carsjens, J.G., Gobel, C. and Feussner, I. Divinyl ether synthesis in garlic bulbs. J. Exp. Bot. 59 (2008) 907–915. [DOI] [PMID: 18326559]
3.  Gorina, S.S., Toporkova, Y.Y., Mukhtarova, L.S., Smirnova, E.O., Chechetkin, I.R., Khairutdinov, B.I., Gogolev, Y.V. and Grechkin, A.N. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochim. Biophys Acta 1861 (2016) 301–309. [DOI] [PMID: 26776054]
[EC 4.2.1.183 created 2024]
 
 
EC 1.1.1.395     Relevance: 84.3%
Accepted name: 3α-hydroxy bile acid-CoA-ester 3-dehydrogenase
Reaction: a 3α-hydroxy bile acid CoA ester + NAD+ = a 3-oxo bile acid CoA ester + NADH + H+
Other name(s): baiA1 (gene name); baiA2 (gene name); baiA3 (gene name)
Systematic name: 3α-hydroxy-bile-acid-CoA-ester:NAD+ 3-oxidoreductase
Comments: This bacterial enzyme is involved in the 7-dehydroxylation process associated with bile acid degradation. The enzyme has very little activity with unconjugated bile acid substrates. It has similar activity with choloyl-CoA, chenodeoxycholoyl-CoA, deoxycholoyl-CoA, and lithocholoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mallonee, D.H., Lijewski, M.A. and Hylemon, P.B. Expression in Escherichia coli and characterization of a bile acid-inducible 3α-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. Curr. Microbiol. 30 (1995) 259–263. [PMID: 7766153]
2.  Bhowmik, S., Jones, D.H., Chiu, H.P., Park, I.H., Chiu, H.J., Axelrod, H.L., Farr, C.L., Tien, H.J., Agarwalla, S. and Lesley, S.A. Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe. Proteins 82 (2014) 216–229. [DOI] [PMID: 23836456]
[EC 1.1.1.395 created 2016]
 
 
EC 3.5.2.15     Relevance: 83.9%
Accepted name: cyanuric acid amidohydrolase
Reaction: cyanuric acid + H2O = 1-carboxybiuret
For diagram of atrazine catabolism, click here
Glossary: cyanuric acid = 1,3,5-triazine-2,4,6(1H,3H,5H)-trione = 2,4,6-trihydroxy-s-triazine
1-carboxybiuret = N-[(carbamoylamino)carbonyl]carbamate
Other name(s): atzD (gene name); trzD (gene name)
Systematic name: cyanuric acid amidohydrolase
Comments: The enzyme catalyses the ring cleavage of cyanuric acid, an intermediate in the degradation of s-triazide herbicides such as atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine]. The enzyme is highly specific for cyanuric acid. The product was initially thought to be biuret, but was later shown to be 1-carboxybiuret.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 132965-78-7
References:
1.  Eaton, R.W. and Karns, J.S. Cloning and comparison of the DNA encoding ammelide aminohydrolase and cyanuric acid amidohydrolase from three s-triazine-degrading bacterial strains. J. Bacteriol. 173 (1991) 1363–1366. [DOI] [PMID: 1991731]
2.  Eaton, R.W. and Karns, J.S. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J. Bacteriol. 173 (1991) 1215–1222. [DOI] [PMID: 1846859]
3.  Karns, J.S. Gene sequence and properties of an s-triazine ring-cleavage enzyme from Pseudomonas sp. strain NRRLB-12227. Appl. Environ. Microbiol. 65 (1999) 3512–3517. [DOI] [PMID: 10427042]
4.  Fruchey, I., Shapir, N., Sadowsky, M.J. and Wackett, L.P. On the origins of cyanuric acid hydrolase: purification, substrates, and prevalence of AtzD from Pseudomonas sp. strain ADP. Appl. Environ. Microbiol. 69 (2003) 3653–3657. [DOI] [PMID: 12788776]
5.  Esquirol, L., Peat, T.S., Wilding, M., Liu, J.W., French, N.G., Hartley, C.J., Onagi, H., Nebl, T., Easton, C.J., Newman, J. and Scott, C. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. J. Biol. Chem. 293 (2018) 7880–7891. [DOI] [PMID: 29523689]
[EC 3.5.2.15 created 2000, modified 2008, modified 2019]
 
 
EC 2.1.1.284     Relevance: 83.2%
Accepted name: 8-demethylnovobiocic acid C8-methyltransferase
Reaction: S-adenosyl-L-methionine + 8-demethylnovobiocic acid = S-adenosyl-L-homocysteine + novobiocic acid
For diagram of novobiocin biosynthesis, click here
Glossary: novobiocic acid = N-(2,7-dihydroxy-8-methyl-4-oxochromen-3-yl)-4-hydroxy-3-(3-methylbut-2-enyl) benzamide
Other name(s): NovO
Systematic name: S-adenosyl-L-methionine:8-demethylnovobiocic acid C8-methyltransferase
Comments: The enzyme is involved in the biosynthesis of the aminocoumarin antibiotic novobiocin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pacholec, M., Tao, J. and Walsh, C.T. CouO and NovO: C-methyltransferases for tailoring the aminocoumarin scaffold in coumermycin and novobiocin antibiotic biosynthesis. Biochemistry 44 (2005) 14969–14976. [DOI] [PMID: 16274243]
[EC 2.1.1.284 created 2013]
 
 
EC 3.5.1.77     Relevance: 83.1%
Accepted name: N-carbamoyl-D-amino-acid hydrolase
Reaction: an N-carbamoyl-D-amino acid + H2O = a D-amino acid + NH3 + CO2
Other name(s): D-N-carbamoylase; N-carbamoylase (ambiguous); N-carbamoyl-D-amino acid hydrolase
Systematic name: N-carbamoyl-D-amino-acid amidohydrolase
Comments: This enzyme, along with EC 3.5.1.87 (N-carbamoyl-L-amino-acid hydrolase), EC 5.1.99.5 (hydantoin racemase) and hydantoinase, forms part of the reaction cascade known as the "hydantoinase process", which allows the total conversion of D,L-5-monosubstituted hydantoins into optically pure D- or L-amino acids [2]. It has strict stereospecificity for N-carbamoyl-D-amino acids and does not act upon the corresponding L-amino acids or on the N-formyl amino acids, N-carbamoyl-sarcosine, -citrulline, -allantoin and -ureidopropanoate, which are substrates for other amidohydrolases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71768-08-6
References:
1.  Ogawa, J., Shimizu, S., Yamada, H. N-Carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c; purification and characterization. Eur. J. Biochem. 212 (1993) 685–691. [DOI] [PMID: 8462543]
2.  Altenbuchner, J., Siemann-Herzberg, M. and Syldatk, C. Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr. Opin. Biotechnol. 12 (2001) 559–563. [DOI] [PMID: 11849938]
[EC 3.5.1.77 created 1999, modified 2008]
 
 
EC 2.7.7.82     Relevance: 82.7%
Accepted name: CMP-N,N′-diacetyllegionaminic acid synthase
Reaction: CTP + N,N′-diacetyllegionaminate = CMP-N,N′-diacetyllegionaminate + diphosphate
For diagram of legionaminic acid biosynthesis, click here
Glossary: legionaminate = 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonate
Other name(s): CMP-N,N′-diacetyllegionaminic acid synthetase; neuA (gene name); legF (gene name)
Systematic name: CTP:N,N′-diacetyllegionaminate cytidylyltransferase
Comments: Isolated from the bacteria Legionella pneumophila and Campylobacter jejuni. Involved in biosynthesis of legionaminic acid, a sialic acid-like derivative that is incorporated into virulence-associated cell surface glycoconjugates which may include lipopolysaccharide (LPS), capsular polysaccharide, pili and flagella.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [DOI] [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [DOI] [PMID: 19282391]
[EC 2.7.7.82 created 2012]
 
 
EC 7.4.2.2     Relevance: 82.5%
Accepted name: ABC-type nonpolar-amino-acid transporter
Reaction: ATP + H2O + nonpolar amino acid-[nonpolar amino acid-binding protein][side 1] = ADP + phosphate + nonpolar amino acid[side 2] + [nonpolar amino acid-binding protein][side 1]
Other name(s): nonpolar-amino-acid-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, nonpolar-amino-acid-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein. This entry comprises enzymes that import Leu, Ile and Val.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
2.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
3.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC 7.4.2.2 created 2000 as EC 3.6.3.22, transferred 2018 to EC 7.4.2.2]
 
 
EC 1.4.1.5     Relevance: 82.4%
Accepted name: L-amino-acid dehydrogenase
Reaction: an L-amino acid + H2O + NAD+ = a 2-oxo carboxylate + NH3 + NADH + H+
Systematic name: L-amino-acid:NAD+ oxidoreductase (deaminating)
Comments: Acts on aliphatic amino acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9029-13-4
References:
1.  Nisman, B. and Mager, J. Diphosphopyridine nucleotide and phosphate requirement for oxidation of amino-acids by cell-free extracts of obligate anaerobes. Nature (Lond.) 169 (1952) 243–244. [PMID: 14910739]
[EC 1.4.1.5 created 1961]
 
 
EC 1.14.14.49     Relevance: 82%
Accepted name: 12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase
Reaction: a 12-hydroxyjasmonoyl-L-amino acid + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) a 12-hydroxyjasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b) a 12-oxojasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: 12-hydroxy-12-oxojasmonate = (3Z)-5-[(1R,2R)-2-(carboxymethyl)-5-oxocyclopentyl]pent-3-enoate
Other name(s): CYP94C1 (gene name)
Systematic name: 12-hydroxyjasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates that have been hydroxylated at the C-12 position of jasmonic acid by EC 1.14.14.48, jasmonoyl-L-amino acid 12-hydroxylase, further oxidizing that position to a carboxylate via an aldehyde intermediate. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
2.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
3.  Bruckhoff, V., Haroth, S., Feussner, K., Konig, S., Brodhun, F. and Feussner, I. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS One 11 (2016) e0159875. [DOI] [PMID: 27459369]
[EC 1.14.14.49 created 2017]
 
 
EC 3.1.1.93     Relevance: 81.7%
Accepted name: mycophenolic acid acyl-glucuronide esterase
Reaction: mycophenolic acid O-acyl-glucuronide + H2O = mycophenolate + D-glucuronate
Glossary: mycophenolate = (4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate
mycophenolic acid O-acyl-glucuronide = 1-O-[(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoyl]-β-D-glucopyranuronic acid
Other name(s): mycophenolic acid acyl-glucuronide deglucuronidase; AcMPAG deglucuronidase
Systematic name: mycophenolic acid O-acyl-glucuronide-ester hydrolase
Comments: This liver enzyme deglucuronidates mycophenolic acid O-acyl-glucuronide, a metabolite of the immunosuppressant drug mycophenolate that is thought to be immunotoxic.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Iwamura, A., Fukami, T., Higuchi, R., Nakajima, M. and Yokoi, T. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J. Biol. Chem. 287 (2012) 9240–9249. [DOI] [PMID: 22294686]
[EC 3.1.1.93 created 2012]
 
 
EC 1.14.14.124     Relevance: 81.2%
Accepted name: dihydromonacolin L hydroxylase
Reaction: dihydromonacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = monacolin L acid + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) dihydromonacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = 3α-hydroxy-3,5-dihydromonacolin L acid + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 3α-hydroxy-3,5-dihydromonacolin L acid = monacolin L acid + H2O (spontaneous)
For diagram of lovastatin biosynthesis, click here
Glossary: dihydromonacolin L acid = (3R,5R)-7-[(1S,2S,4aR,6R,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen1yl]-3,5-dihydroxyheptanoate
monacolin L acid = (3R,5R)-7-[(1S,2S,6R,8aR)-2,6-dimethyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoate
3α-hydroxy-3,5-dihydromonacolin L = (3R,5R)-7-[(1R,2R,3S,6R,8aR)-3-hydroxy-2,6-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-1-yl]-3,5-dihydroxyheptanoate
Other name(s): LovA (ambiguous)
Systematic name: dihydromonacolin L acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The dehydration of 3α-hydroxy-3,5-dihydromonacolin L acid is believed to be spontaneous [1,2]. The enzyme from fungi also catalyses the reaction of EC 1.14.14.125, monacolin L hydroxylase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Treiber, L.R., Reamer, R.A., Rooney, C.S. and Ramjit, H.G. Origin of monacolin L from Aspergillus terreus cultures. J. Antibiot. (Tokyo) 42 (1989) 30–36. [PMID: 2921224]
2.  Nakamura, T., Komagata, D., Murakawa, S., Sakai, K. and Endo, A. Isolation and biosynthesis of 3α-hydroxy-3,5-dihydromonacolin L. J. Antibiot. (Tokyo) 43 (1990) 1597–1600. [PMID: 2276977]
3.  Barriuso, J., Nguyen, D.T., Li, J.W., Roberts, J.N., MacNevin, G., Chaytor, J.L., Marcus, S.L., Vederas, J.C. and Ro, D.K. Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. J. Am. Chem. Soc. 133 (2011) 8078–8081. [DOI] [PMID: 21495633]
[EC 1.14.14.124 created 2014 as EC 1.14.13.197, transferred 2018 to EC 1.14.14.124]
 
 
EC 2.3.1.36     Relevance: 81.1%
Accepted name: D-amino-acid N-acetyltransferase
Reaction: acetyl-CoA + a D-amino acid = CoA + an N-acetyl-D-amino acid
Other name(s): D-amino acid acetyltransferase; D-amino acid-α-N-acetyltransferase
Systematic name: acetyl-CoA:D-amino-acid N-acetyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-15-1
References:
1.  Zenk, M.H. and Schmitt, J. Reinigung und Eigenschaften von Acetyl-CoA:D-Aminosäure-α-N-Acetyltransferase aus Hefe. Biochem. Z. 342 (1965) 54–65. [PMID: 5847960]
[EC 2.3.1.36 created 1972]
 
 
EC 2.3.2.4      
Transferred entry: γ-glutamylcyclotransferase. Now classified as EC 4.3.2.9, γ-glutamylcyclotransferase
[EC 2.3.2.4 created 1972, deleted 2017]
 
 
EC 1.1.3.15     Relevance: 80.7%
Accepted name: (S)-2-hydroxy-acid oxidase
Reaction: an (S)-2-hydroxy carboxylate + O2 = a 2-oxo carboxylate + H2O2
Other name(s): hydroxy-acid oxidase A; hydroxy-acid oxidase B; glycolate oxidase; L-2-hydroxy acid oxidase; hydroxyacid oxidase A; L-α-hydroxy acid oxidase
Systematic name: (S)-2-hydroxy carboxylate:oxygen 2-oxidoreductase
Comments: A flavoprotein (FMN). Exists as two major isoenzymes; the A form preferentially oxidizes short-chain aliphatic hydroxy acids, and was previously listed as EC 1.1.3.1, glycolate oxidase; the B form preferentially oxidizes long-chain and aromatic hydroxy acids. The rat isoenzyme B also acts as EC 1.4.3.2, L-amino-acid oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-71-1
References:
1.  Blanchard, M., Green, D.E., Nocito-Carroll, V. and Ratner, S. l-Hydroxy acid oxidase. J. Biol. Chem. 163 (1946) 137–144. [PMID: 21023634]
2.  Frigerio, N.A. and Harbury, H.A. Preparation and some properties of crystalline glycolic acid oxidase of spinach. J. Biol. Chem. 231 (1958) 135–157. [PMID: 13538955]
3.  Kun, E., Dechary, J.M. and Pitot, H.C. The oxidation of glycolic acid by a liver enzyme. J. Biol. Chem. 210 (1954) 269–280. [PMID: 13201588]
4.  Nakano, M. and Danowski, T.S. Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria. J. Biol. Chem. 241 (1966) 2075–2083. [PMID: 5946631]
5.  Nakano, M., Ushijima, Y., Saga, M., Tsutsumi, Y. and Asami, H. Aliphatic L-α-hydroxyacid oxidase from rat livers: purification and properties. Biochim. Biophys. Acta 167 (1968) 9–22. [DOI] [PMID: 5686300]
6.  Phillips, D.R., Duley, J.A., Fennell, D.J. and Holmes, R.S. The self-association of L-α hydroxyacid oxidase. Biochim. Biophys. Acta 427 (1976) 679–687. [DOI] [PMID: 1268224]
7.  Schuman, M. and Massey, V. Purification and characterization of glycolic acid oxidase from pig liver. Biochim. Biophys. Acta 227 (1971) 500–520. [DOI] [PMID: 5569122]
8.  Jones, J.M., Morrell, J.C. and Gould, S.J. Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. J. Biol. Chem. 275 (2000) 12590–12597. [DOI] [PMID: 10777549]
[EC 1.1.3.15 created 1972 (EC 1.1.3.1 created 1961, incorporated 1984)]
 
 
EC 2.6.1.60     Relevance: 80.6%
Accepted name: aromatic-amino-acid—glyoxylate transaminase
Reaction: an aromatic amino acid + glyoxylate = an aromatic oxo acid + glycine
Systematic name: aromatic-amino-acid:glyoxylate aminotransferase
Comments: Phenylalanine, kynurenine, tyrosine and histidine can act as amino donors; glyoxylate, pyruvate and hydroxypyruvate can act as amino acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67185-76-6
References:
1.  Harada, I., Noguchi, T. and Kido, R. Purification and characterization of aromatic-amino-acid-glyoxylate aminotransferase from monkey and rat liver. Hoppe-Seylers Z. Physiol. Chem. 359 (1978) 481–488. [DOI] [PMID: 25837]
[EC 2.6.1.60 created 1978]
 
 
EC 1.4.99.1      
Transferred entry: D-amino-acid dehydrogenase. Now listed as EC 1.4.99.6, D-arginine dehydrogenase
[EC 1.4.99.1 created 1972, deleted 2015]
 
 
EC 1.17.1.6      
Transferred entry: bile-acid 7α-dehydroxylase. Now EC 1.17.99.5, bile-acid 7α-dehydroxylase. It is now known that FAD is the acceptor and not NAD+ as was thought previously
[EC 1.17.1.6 created 2005, deleted 2006]
 
 
EC 6.2.1.57     Relevance: 79.3%
Accepted name: long-chain fatty acid adenylase/transferase FadD23
Reaction: (1) ATP + stearate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + diphosphate + a stearoyl-[(hydroxy)phthioceranic acid synthase] (overall reaction)
(1a) ATP + stearate = diphosphate + (stearoyl)adenylate
(1b) (stearoyl)adenylate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + a stearoyl-[(hydroxy)phthioceranic acid synthase]
(2) ATP + palmitate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + diphosphate + a palmitoyl-[(hydroxy)phthioceranic acid synthase] (overall reaction)
(2a) ATP + palmitate = diphosphate + (palmitoyl)adenylate
(2b) (palmitoyl)adenylate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + a palmitoyl-[(hydroxy)phthioceranic acid synthase]
Other name(s): fadD23 (gene name); long-chain fatty acid adenylyltransferase FadD23
Systematic name: palmitate:holo-[(hydroxy)phthioceranic acid synthase] ligase
Comments: This mycobacterial enzyme activates palmitate and stearate by adenylation, followed by their loading onto the polyketide synthase EC 2.3.1.287, phthioceranic/hydroxyphthioceranic acid synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gokhale, R.S., Saxena, P., Chopra, T. and Mohanty, D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat. Prod. Rep. 24 (2007) 267–277. [PMID: 17389997]
2.  Lynett, J. and Stokes, R.W. Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology 153 (2007) 3133–3140. [PMID: 17768256]
[EC 6.2.1.57 created 2019]
 
 
EC 1.11.2.4     Relevance: 79.1%
Accepted name: fatty-acid peroxygenase
Reaction: fatty acid + H2O2 = 3- or 2-hydroxy fatty acid + H2O
Other name(s): fatty acid hydroxylase (ambiguous); P450 peroxygenase; CYP152A1; P450BS; P450SPα
Systematic name: fatty acid:hydroperoxide oxidoreductase (RH-hydroxylating)
Comments: A cytosolic heme-thiolate protein with sequence homology to P-450 monooxygenases. Unlike the latter, it needs neither NAD(P)H, dioxygen nor specific reductases for function. Enzymes of this type are produced by bacteria (e.g. Sphingomonas paucimobilis, Bacillus subtilis). Catalytic turnover rates are high compared with those of monooxygenation reactions as well as peroxide shunt reactions catalysed by the common P-450s. A model substrate is myristate, but other saturated and unsaturated fatty acids are also hydroxylated. Oxidizes the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) and peroxygenates aromatic substrates in a fatty-acid-dependent reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Matsunaga, I., Yamada, M., Kusunose, E., Nishiuchi, Y., Yano, I. and Ichihara, K. Direct involvement of hydrogen peroxide in bacterial α-hydroxylation of fatty acid. FEBS Lett. 386 (1996) 252–254. [DOI] [PMID: 8647293]
2.  Matsunaga, I., Yamada, M., Kusunose, E., Miki, T. and Ichihara, K. Further characterization of hydrogen peroxide-dependent fatty acid α-hydroxylase from Sphingomonas paucimobilis. J. Biochem. 124 (1998) 105–110. [PMID: 9644252]
3.  Matsunaga, I., Ueda, A., Fujiwara, N., Sumimoto, T. and Ichihara, K. Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid β-hydroxylating cytochrome P450. Lipids 34 (1999) 841–846. [DOI] [PMID: 10529095]
4.  Imai, Y., Matsunaga, I., Kusunose, E. and Ichihara, K. Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid α-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450SPα). J. Biochem. 128 (2000) 189–194. [PMID: 10920253]
5.  Matsunaga, I., Yamada, A., Lee, D.S., Obayashi, E., Fujiwara, N., Kobayashi, K., Ogura, H. and Shiro, Y. Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Biochemistry 41 (2002) 1886–1892. [DOI] [PMID: 11827534]
6.  Lee, D.S., Yamada, A., Sugimoto, H., Matsunaga, I., Ogura, H., Ichihara, K., Adachi, S., Park, S.Y. and Shiro, Y. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J. Biol. Chem. 278 (2003) 9761–9767. [DOI] [PMID: 12519760]
7.  Matsunaga, I. and Shiro, Y. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr. Opin. Chem. Biol. 8 (2004) 127–132. [DOI] [PMID: 15062772]
8.  Shoji, O., Wiese, C., Fujishiro, T., Shirataki, C., Wunsch, B. and Watanabe, Y. Aromatic C-H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russig’s blue formation. J. Biol. Inorg. Chem. 15 (2010) 1109–1115. [DOI] [PMID: 20490877]
[EC 1.11.2.4 created 2011]
 
 
EC 2.6.1.57     Relevance: 79%
Accepted name: aromatic-amino-acid transaminase
Reaction: an aromatic amino acid + 2-oxoglutarate = an aromatic oxo acid + L-glutamate
For diagram of phenylalanine and tyrosine biosynthesis, click here and for diagram of the methionine-salvage pathway, click here
Other name(s): aromatic amino acid aminotransferase; aromatic aminotransferase; ArAT
Systematic name: aromatic-amino-acid:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. L-Methionine can also act as donor, but more slowly; oxaloacetate can act as acceptor. Controlled proteolysis converts the enzyme into EC 2.6.1.1 aspartate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37332-38-0
References:
1.  Mavrides, C. and Orr, W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J. Biol. Chem. 250 (1975) 4128–4133. [PMID: 236311]
[EC 2.6.1.57 created 1976]
 
 
EC 3.5.1.99     Relevance: 78.8%
Accepted name: fatty acid amide hydrolase
Reaction: (1) anandamide + H2O = arachidonic acid + ethanolamine
(2) oleamide + H2O = oleic acid + NH3
Glossary: anandamide = (5Z,8Z,11Z,14Z)-N-(2-hydroxyethyl)icosa-5,8,11,14-tetraenamide
Other name(s): FAAH; oleamide hydrolase; anandamide amidohydrolase
Systematic name: fatty acylamide amidohydrolase
Comments: Integral membrane protein, the enzyme is responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide, occurs in mammalia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Boger, D.L., Fecik, R.A., Patterson, J.E., Miyauchi, H., Patricelli, M.P. and Cravatt, B.F. Fatty acid amide hydrolase substrate specificity. Bioorg. Med. Chem. Lett. 10 (2000) 2613–2616. [DOI] [PMID: 11128635]
2.  Patricelli, M.P., Lashuel, H.A., Giang, D.K., Kelly, J.W. and Cravatt, B.F. Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization. Biochemistry 37 (1998) 15177–15187. [DOI] [PMID: 9790682]
3.  Patricelli, M.P. and Cravatt, B.F. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase. Biochemistry 40 (2001) 6107–6115. [DOI] [PMID: 11352748]
[EC 3.5.1.99 created 2009]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald